

National Law Enforcement M U S E U M <u>A MATTER OF HONOR</u>



National Law Enforcement Officers Memorial Fund

Anya Godigamuwe | AE Senior Thesis | Mechanical | April 2015





#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements







#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**



#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**

# **Project Team**

Architect: Davis Buckley Architects & Planners MEP: Loring Consulting Engineers Structural: Spiegel, Zamecnik & Shah Construction Manager: Clark Construction Acoustic Consultant: Shen Milsom Wake Lighting Consultant: Claude R. Engel Landscape: Urban Tree + Soils

#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**

**Construction, Cost** & Schedule Design – Bid – Build Cost: \$50 million Mechanical Cost: \$4.5 million Schedule: 28 months Summer 2015



#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**

Architecture Building: 54000 GSF Two entry pavilions Museum Spaces Underground Research Center Café Gift Shop Offices Exhibit Spaces Theater Hall of Remembrance Central Plant



#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**

Architecture Building: 54000 GSF Two entry pavilions Museum Spaces Underground Research Center Café Gift Shop Offices Exhibit Spaces Theater Hall of Remembrance Central Plant



#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**

Architecture Building: 54000 GSF Two entry pavilions Museum Spaces Underground Research Center Café Gift Shop Offices Exhibit Spaces Theater Hall of Remembrance Central Plant

#### Courtesy of NLEOMF



#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Project Information**

Architecture Building: 54000 GSF Two entry pavilions Museum Spaces Underground Research Center Café Gift Shop Offices Exhibit Spaces Theater Hall of Remembrance Central Plant

#### Courtesy of NLEOMF



#### Introduction

#### Project Information

#### Mechanical System Redesign

- Existing VAV System
- Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements



# **Depth One: Mechanical** System Redesign

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Design Goals Energy Efficiency Minimum Noise LEED Silver Status

#### Depth: Mechanical System Redesign

Challenges Humid Summer Unobtrusive Design

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





# **Depth: Mechanical System Redesign**

# Equipment

Mechanical Penthouse East (1) Air Handling Unit East Entry (2) Cooling Towers Chillers

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





# **Depth: Mechanical System Redesign**

#### Equipment Mechanical Penthouse West (1) Air Handling Unit West Entry

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





# Depth: Mechanical System Redesign

# Equipment

Mech. Rm. Ticket Level East (2) Air Handling Units Exhibits Theater Mech. Rm. Ticket Level West (1) Air Handling Unit Exhibits Fan Coil Units

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



#### Depth: Mechanical System Redesign



Equipment Central Plant (1) Air Handling Unit Pepco/Switchgear Rm. (1) Chiller (1) Heat Exchanger (4) Pumps (1) Expansion Tank (1) CHW Buffer Tank

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Depth: Mechanical System Redesign**

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Receptacle Load 48%

# Depth: Mechanical System Redesign

# **Percent Building Energy Use**



| Energy Costs                      | KWH    | KE |
|-----------------------------------|--------|----|
| Heating                           | 142345 | 4  |
| Cooling                           | 186857 | 6  |
| Auxiliary Mechanical<br>Equipment | 3954   |    |
| Lighting                          | 280914 | 9  |
| Receptacle Load                   | 559656 | 19 |

#### BTU/YR

485825

637742

13496

958760

L910107

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



# Proposed Redesign – **VRF System**

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Reasoning Less Energy Lower Noise Long Term Cost

#### **Depth: Mechanical System Redesign**

Model Trace 700 Zoning by Use DOAS

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### Depth: Mechanical System Redesign

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Heating Load (Btu/hr)

Cooling Load (Btu/hr)

# **Depth: Mechanical System Redesign**

#### **Cooling and Heating Load for VAV and VRF System**



Heating & Cooling Loads VRF – 164 Cooling tons 27% less than VAV VRF – 884 MBH 22% less than VAV

# Depth: Mechanical System Redesign

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





Annual Energy Use
VRF uses less energy in winter
Both system's energy use is similar
Cannot choose one over other

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



| Net |
|-----|
|     |
|     |
|     |
| Sa  |
|     |
|     |
|     |

#### **Depth: Mechanical System Redesign**

| Life Cycle Cost Estimate        |              |  |  |  |
|---------------------------------|--------------|--|--|--|
| Delta First Cost                | \$ 40,555.00 |  |  |  |
| change in annual operating cost | \$ 4,168.00  |  |  |  |
| Simple Payback Period           | 9.73         |  |  |  |
| Length of life                  | 20 years     |  |  |  |
| Discount Rate                   | 3%           |  |  |  |
| avings over life (20yrs @ 3%)   | \$ 62,009.29 |  |  |  |
| Benefit to Cost Ratio 1.53      |              |  |  |  |
| Is BCR Cost effective?          | YES          |  |  |  |
| Internal Rate of Return         | 8.13%        |  |  |  |

#### **Cost Analysis** Length of Life – Mitsubishi 3% expected discount rate 8.13% IRR

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### Depth: Mechanical System Redesign

| Alternative 1 & 2 Comparison |         |         |             |  |  |  |
|------------------------------|---------|---------|-------------|--|--|--|
|                              | VAV     | VRF     | %Difference |  |  |  |
| CFM                          | 109761  | 106867  | 2.64%       |  |  |  |
| KW                           | 1181926 | 1108271 | 6.23%       |  |  |  |
| 2 (lbm/yr)                   | 3265014 | 3090651 | 5.34%       |  |  |  |
| 02 (gm/yr)                   | 11672   | 11049   | 5.34%       |  |  |  |
| DX (gm/yr)                   | 4982    | 4716    | 5.34%       |  |  |  |

# Comparison

Similar operation to VAV Less cooling energy, 6% 10 year payback period Potential 5% reduction in CO2 emissions

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Conclusion: VRF is not a Cost Energy Use Emissions

Depth: Mechanical System Redesign

# **Conclusion:** VRF is not a good option

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



# **Depth Two: Pavilion Façade** Redesign

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



### Depth: Pavilion Façade Redesign



**Design Goals** Minimize Solar Heat Gain Minimize Cooling Load

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### Depth: Pavilion Façade Redesign

# **Challenges** Maintain Aesthetic

*"minimize intrusion to surrounding square...strong and elegant...respectfully respond to the heavier mass..." - DBA Website*

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Depth: Pavilion Façade Redesign**

Proposal Replace roof Utilize better curtain wall



- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



|                    | Origina                                                                              |  |
|--------------------|--------------------------------------------------------------------------------------|--|
| Material           | Desci                                                                                |  |
| Outboard<br>Lite   | clear (low iron)<br>heat soaked o<br>Emissivity Coat<br>2 Surface, and<br>and polisi |  |
| Air Space          | A                                                                                    |  |
| Inboard<br>Lite x2 | Clear (low iror<br>glass laminate<br>DuPont Sen<br>structural inte<br>ground and p   |  |
| Thickness          |                                                                                      |  |
| Α                  | pproximate U-\                                                                       |  |
| Shading Coeffic    |                                                                                      |  |
| Visible Transmis   |                                                                                      |  |
|                    |                                                                                      |  |

# **Depth: Pavilion Façade Redesign**

| al Glass Proposed Viracon Glass |                                                                |                                                                                  |                                                                                                                                                                                                                                                 |  |      |
|---------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------|
|                                 | Proposed Viracon Glass                                         |                                                                                  |                                                                                                                                                                                                                                                 |  |      |
| Thickness<br>(in.)              | Material                                                       | Description                                                                      | Thickness<br>(in.)                                                                                                                                                                                                                              |  |      |
| 0.31                            | Outer<br>Layer                                                 | Insulating tempered glass with<br>30% silk screen coverage                       | 0.25                                                                                                                                                                                                                                            |  |      |
| 0.5                             | Air Space                                                      | Air                                                                              | 0.5                                                                                                                                                                                                                                             |  |      |
| 0.625                           | Inner<br>Layer                                                 | Tempered glass with low-E<br>coating                                             | .25                                                                                                                                                                                                                                             |  |      |
| 1.50                            | Thickness                                                      |                                                                                  | 1.00                                                                                                                                                                                                                                            |  |      |
|                                 | Approximate U-Value 0.26                                       |                                                                                  | Approximate U-Value                                                                                                                                                                                                                             |  | 0.26 |
| 0.50                            | Shading Coefficient 0.35                                       |                                                                                  | Shading Coefficient                                                                                                                                                                                                                             |  | 0.35 |
| 0.90                            | Visible Transmissivity 0.55                                    |                                                                                  | Visible Transmissivity                                                                                                                                                                                                                          |  | 0.55 |
|                                 | ( <i>in.</i> )<br>0.31<br>0.5<br>0.625<br>1.50<br>0.31<br>0.50 | (in.)Material0.31Outer<br>Layer0.5Air Space0.625Inner<br>Layer1.50Thickness0.31A | Thickness<br>(in.)MaterialDescription0.31Outer<br>LayerInsulating tempered glass with<br>30% silk screen coverage0.5Air SpaceAir0.625Inner<br>LayerTempered glass with low-E<br>coating1.50ThicknessCoating0.31Thickness0.50Shading Coefficient |  |      |

Model

Trace 700 VAV Model Alternative with new glass type Compare with VAV design

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements







# **Depth: Pavilion Façade Redesign**

#### Solar Heat Gain Peak Solar Load Comparison

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





# Depth: Pavilion Façade Redesign

#### **Total Cooling Load Comparison**



**Monthly Utility Cost** 



**Cooling Load** Cooling Load Comparison Monthly Utility Cost
- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Conclusion Façade change beneficial Reduced energy cost Aesthetic unharmed

**Depth: Pavilion Façade Redesign** 

**Depth:** Pavilion Façade Redesign Design Goals Challenges Proposal Model Solar Heat Gain Cooling Load Conclusion

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



Breadth Topic: Acoustic Analysis

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Breadth: Acoustic Analysis**

#### **Space Description** Giving face to loss Tribute to fallen



- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### Breadth: Acoustic Analysis

#### **Design Goals** Purpose Low "echo" Speech intelligibility

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### Breadth: Acoustic Analysis

#### Criteria

Reverberation Time Quality of sound Speech intelligibility

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





#### **Breadth: Acoustic Analysis**



| Wall Type 37                                |  |
|---------------------------------------------|--|
| Materials                                   |  |
| Metal Panel system                          |  |
| 5/8" medium density<br>fiberboard           |  |
| "Z" clips                                   |  |
| 2 layers 5/8" GWB                           |  |
| 3-5/" insulation with metal studs at 16" OC |  |
| 2 layers 5/8" GWB                           |  |

| Octave<br>Band | Absorption Coefficient, $\alpha$ |
|----------------|----------------------------------|
| 125            | 0.1                              |
| 250            | 0.07                             |
| 500            | 0.05                             |
| 1000           | 0.05                             |
| 2000           | 0.04                             |
| 4000           | 0.04                             |

#### **Modeling Process** Absorption Values Wall Area RT value per octave band



- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





### Breadth: Acoustic Analysis

| ÿ   | 125  | 250  | 500 | 1000 | 2000 | 4000 |
|-----|------|------|-----|------|------|------|
| ion | 0.48 | 0.39 | 0.4 | 0.3  | 0.26 | 0.24 |

#### **RT FOR HALL OF REMEMBRANCE (S)**



**Results** Room RT = 0.4 s. Highest RT at 125 Hz *Architectural Acoustics: Principles & Design* 

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements





### **Breadth: Acoustic Analysis**

| у   | 125  | 250  | 500 | 1000 | 2000 | 4000 |
|-----|------|------|-----|------|------|------|
| ion | 0.48 | 0.39 | 0.4 | 0.3  | 0.26 | 0.24 |

#### **RT FOR HALL OF REMEMBRANCE (S)**



#### Conclusion This RT is good for space Low frequency concern

- Introduction
- Project Information
  - Mechanical System Redesign
    - Existing VAV System
    - Proposed VRF System
  - Pavilion Façade Redesign
    - Existing Façade
    - Proposed Façade
  - Acoustic Analysis
- Conclusion
- Acknowledgements



VRF System Less energy use Rate of return, 8.3% Payback period, 10 years Cost, \$40,000 extra

#### Conclusion

#### **Pavilion Facade**

Less energy use Lower cooling load Acoustic Analysis Meets criteria RT of 0.4 s. ideal

#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements



#### Acknowledgements

# Thank you

# My sincere thanks to:

Mr. J. Michael Galway - Loring Consulting Engineers Mr. Davis Buckley & Mr. Thomas Striegel -Davis Buckley Architects & Planners Ms. Jeni Ashton - National Law Enforcement Museum Mr. Lincoln Lawrence - Clark Construction Group Dr. Stephen Treado & Prof. Stephen Parfitt PSU Architectural Engineering Dept.

#### My loving family & friends

#### Introduction

#### Project Information

- Mechanical System Redesign
  - Existing VAV System
  - Proposed VRF System
- Pavilion Façade Redesign
  - Existing Façade
  - Proposed Façade
- Acoustic Analysis
- Conclusion
- Acknowledgements



#### Acknowledgements

# Thank you

# My sincere thanks to:

Mr. J. Michael Galway - Loring Consulting Engineers Mr. Davis Buckley & Mr. Thomas Striegel -Davis Buckley Architects & Planners Ms. Jeni Ashton - National Law Enforcement Museum Mr. Lincoln Lawrence - Clark Construction Group Dr. Stephen Treado & Prof. Stephen Parfitt PSU Architectural Engineering Dept.

#### My loving family & friends

- Appendices
  - A Daylighting
  - B VAV System
  - C VAV/VRF Comparison
  - D Façade Comparison





# Appendix A - Daylighting

**Criteria** IES Lighting Handbook

**Model** IES Virtual Environment RadienceIES Breadth Topic: Daylighting Analysis <u>Model</u> <u>Criteria</u> IES Results

#### Appendices

- A Daylighting
- B VAV System
- C VAV/VRF Comparison
- D Façade Comparison





# Appendix A - Daylighting





### **IES Results** Meet criteria of 100 lux

Breadth Topic: Daylighting Analysis Model Criteria IES Results

#### Appendices

- A Daylighting
- B VAV System
- C VAV/VRF Comparison
- D Façade Comparison





# Appendix A - Daylighting

#### Daylight (fc) Averaged 1 calcs Level:-14.0ft' 520.26 501.68 483.10 464.52 445.93 427.35 408.77 390.19 371.61 353.03 334.45 315.87 297.29 278.71 260.13 241.55 222.97 204.39 185.81 167.23 148.64 130.06 111.48 92.90 74.32 55.74 37.16 18.58

#### **IES Results** Meet criteria of 100 lux

Breadth Topic: Daylighting Analysis Model Criteria IES Results



#### Appendices

- A Daylighting
- B VAV System
- C VAV/VRF Comparison
- D Façade Comparison





# Appendix B – VAV System

Percent Building Energy Use

|                               |  | Energy Costs                         | кwн    | KBTU/Y<br>R |
|-------------------------------|--|--------------------------------------|--------|-------------|
| ing<br>%<br>ry<br>ical<br>ent |  | Heating                              | 142345 | 485825      |
|                               |  | Cooling                              | 186857 | 637742      |
|                               |  | Auxiliary<br>Mechanical<br>Equipment | 3954   | 13496       |
|                               |  | Lighting                             | 280914 | 958760      |
|                               |  | Receptacle Load                      | 559656 | 1910107     |

# Appendix C – VAV/ VRF Comparison

#### Appendices

- A Daylighting
- B VAV System
- C VAV/VRF Comparison
- D Façade Comparison













- Appendices
  - A Daylighting
  - B VAV System
  - C VAV/VRF Comparison
  - D Façade Comparison





### Appendix D – Façade Comparison

VAV VAV W/ New Façade